zstd: Update to upstream version 1.4.8

This commit is contained in:
Rémi Verschelde
2021-01-08 11:21:43 +01:00
parent 0abbefd94a
commit 3645c9c80c
48 changed files with 4405 additions and 2089 deletions

395
thirdparty/zstd/zstd.h vendored
View File

@ -72,16 +72,21 @@ extern "C" {
/*------ Version ------*/
#define ZSTD_VERSION_MAJOR 1
#define ZSTD_VERSION_MINOR 4
#define ZSTD_VERSION_RELEASE 5
#define ZSTD_VERSION_RELEASE 8
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
ZSTDLIB_API unsigned ZSTD_versionNumber(void); /**< to check runtime library version */
/*! ZSTD_versionNumber() :
* Return runtime library version, the value is (MAJOR*100*100 + MINOR*100 + RELEASE). */
ZSTDLIB_API unsigned ZSTD_versionNumber(void);
#define ZSTD_LIB_VERSION ZSTD_VERSION_MAJOR.ZSTD_VERSION_MINOR.ZSTD_VERSION_RELEASE
#define ZSTD_QUOTE(str) #str
#define ZSTD_EXPAND_AND_QUOTE(str) ZSTD_QUOTE(str)
#define ZSTD_VERSION_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_LIB_VERSION)
ZSTDLIB_API const char* ZSTD_versionString(void); /* requires v1.3.0+ */
/*! ZSTD_versionString() :
* Return runtime library version, like "1.4.5". Requires v1.3.0+. */
ZSTDLIB_API const char* ZSTD_versionString(void);
/* *************************************
* Default constant
@ -334,7 +339,9 @@ typedef enum {
* for large inputs, by finding large matches at long distance.
* It increases memory usage and window size.
* Note: enabling this parameter increases default ZSTD_c_windowLog to 128 MB
* except when expressly set to a different value. */
* except when expressly set to a different value.
* Note: will be enabled by default if ZSTD_c_windowLog >= 128 MB and
* compression strategy >= ZSTD_btopt (== compression level 16+) */
ZSTD_c_ldmHashLog=161, /* Size of the table for long distance matching, as a power of 2.
* Larger values increase memory usage and compression ratio,
* but decrease compression speed.
@ -365,16 +372,20 @@ typedef enum {
ZSTD_c_dictIDFlag=202, /* When applicable, dictionary's ID is written into frame header (default:1) */
/* multi-threading parameters */
/* These parameters are only useful if multi-threading is enabled (compiled with build macro ZSTD_MULTITHREAD).
* They return an error otherwise. */
/* These parameters are only active if multi-threading is enabled (compiled with build macro ZSTD_MULTITHREAD).
* Otherwise, trying to set any other value than default (0) will be a no-op and return an error.
* In a situation where it's unknown if the linked library supports multi-threading or not,
* setting ZSTD_c_nbWorkers to any value >= 1 and consulting the return value provides a quick way to check this property.
*/
ZSTD_c_nbWorkers=400, /* Select how many threads will be spawned to compress in parallel.
* When nbWorkers >= 1, triggers asynchronous mode when used with ZSTD_compressStream*() :
* When nbWorkers >= 1, triggers asynchronous mode when invoking ZSTD_compressStream*() :
* ZSTD_compressStream*() consumes input and flush output if possible, but immediately gives back control to caller,
* while compression work is performed in parallel, within worker threads.
* while compression is performed in parallel, within worker thread(s).
* (note : a strong exception to this rule is when first invocation of ZSTD_compressStream2() sets ZSTD_e_end :
* in which case, ZSTD_compressStream2() delegates to ZSTD_compress2(), which is always a blocking call).
* More workers improve speed, but also increase memory usage.
* Default value is `0`, aka "single-threaded mode" : no worker is spawned, compression is performed inside Caller's thread, all invocations are blocking */
* Default value is `0`, aka "single-threaded mode" : no worker is spawned,
* compression is performed inside Caller's thread, and all invocations are blocking */
ZSTD_c_jobSize=401, /* Size of a compression job. This value is enforced only when nbWorkers >= 1.
* Each compression job is completed in parallel, so this value can indirectly impact the nb of active threads.
* 0 means default, which is dynamically determined based on compression parameters.
@ -403,6 +414,11 @@ typedef enum {
* ZSTD_c_literalCompressionMode
* ZSTD_c_targetCBlockSize
* ZSTD_c_srcSizeHint
* ZSTD_c_enableDedicatedDictSearch
* ZSTD_c_stableInBuffer
* ZSTD_c_stableOutBuffer
* ZSTD_c_blockDelimiters
* ZSTD_c_validateSequences
* Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them.
* note : never ever use experimentalParam? names directly;
* also, the enums values themselves are unstable and can still change.
@ -413,7 +429,12 @@ typedef enum {
ZSTD_c_experimentalParam4=1001,
ZSTD_c_experimentalParam5=1002,
ZSTD_c_experimentalParam6=1003,
ZSTD_c_experimentalParam7=1004
ZSTD_c_experimentalParam7=1004,
ZSTD_c_experimentalParam8=1005,
ZSTD_c_experimentalParam9=1006,
ZSTD_c_experimentalParam10=1007,
ZSTD_c_experimentalParam11=1008,
ZSTD_c_experimentalParam12=1009
} ZSTD_cParameter;
typedef struct {
@ -524,11 +545,13 @@ typedef enum {
* At the time of this writing, they include :
* ZSTD_d_format
* ZSTD_d_stableOutBuffer
* ZSTD_d_forceIgnoreChecksum
* Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them.
* note : never ever use experimentalParam? names directly
*/
ZSTD_d_experimentalParam1=1000,
ZSTD_d_experimentalParam2=1001
ZSTD_d_experimentalParam2=1001,
ZSTD_d_experimentalParam3=1002
} ZSTD_dParameter;
@ -664,8 +687,9 @@ typedef enum {
* - Compression parameters cannot be changed once compression is started (save a list of exceptions in multi-threading mode)
* - output->pos must be <= dstCapacity, input->pos must be <= srcSize
* - output->pos and input->pos will be updated. They are guaranteed to remain below their respective limit.
* - endOp must be a valid directive
* - When nbWorkers==0 (default), function is blocking : it completes its job before returning to caller.
* - When nbWorkers>=1, function is non-blocking : it just acquires a copy of input, and distributes jobs to internal worker threads, flush whatever is available,
* - When nbWorkers>=1, function is non-blocking : it copies a portion of input, distributes jobs to internal worker threads, flush to output whatever is available,
* and then immediately returns, just indicating that there is some data remaining to be flushed.
* The function nonetheless guarantees forward progress : it will return only after it reads or write at least 1+ byte.
* - Exception : if the first call requests a ZSTD_e_end directive and provides enough dstCapacity, the function delegates to ZSTD_compress2() which is always blocking.
@ -1100,21 +1124,40 @@ ZSTDLIB_API size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict);
typedef struct ZSTD_CCtx_params_s ZSTD_CCtx_params;
typedef struct {
unsigned int matchPos; /* Match pos in dst */
/* If seqDef.offset > 3, then this is seqDef.offset - 3
* If seqDef.offset < 3, then this is the corresponding repeat offset
* But if seqDef.offset < 3 and litLength == 0, this is the
* repeat offset before the corresponding repeat offset
* And if seqDef.offset == 3 and litLength == 0, this is the
* most recent repeat offset - 1
*/
unsigned int offset;
unsigned int litLength; /* Literal length */
unsigned int matchLength; /* Match length */
/* 0 when seq not rep and seqDef.offset otherwise
* when litLength == 0 this will be <= 4, otherwise <= 3 like normal
*/
unsigned int rep;
unsigned int offset; /* The offset of the match. (NOT the same as the offset code)
* If offset == 0 and matchLength == 0, this sequence represents the last
* literals in the block of litLength size.
*/
unsigned int litLength; /* Literal length of the sequence. */
unsigned int matchLength; /* Match length of the sequence. */
/* Note: Users of this API may provide a sequence with matchLength == litLength == offset == 0.
* In this case, we will treat the sequence as a marker for a block boundary.
*/
unsigned int rep; /* Represents which repeat offset is represented by the field 'offset'.
* Ranges from [0, 3].
*
* Repeat offsets are essentially previous offsets from previous sequences sorted in
* recency order. For more detail, see doc/zstd_compression_format.md
*
* If rep == 0, then 'offset' does not contain a repeat offset.
* If rep > 0:
* If litLength != 0:
* rep == 1 --> offset == repeat_offset_1
* rep == 2 --> offset == repeat_offset_2
* rep == 3 --> offset == repeat_offset_3
* If litLength == 0:
* rep == 1 --> offset == repeat_offset_2
* rep == 2 --> offset == repeat_offset_3
* rep == 3 --> offset == repeat_offset_1 - 1
*
* Note: This field is optional. ZSTD_generateSequences() will calculate the value of
* 'rep', but repeat offsets do not necessarily need to be calculated from an external
* sequence provider's perspective. For example, ZSTD_compressSequences() does not
* use this 'rep' field at all (as of now).
*/
} ZSTD_Sequence;
typedef struct {
@ -1156,6 +1199,12 @@ typedef enum {
* Decoder cannot recognise automatically this format, requiring this instruction. */
} ZSTD_format_e;
typedef enum {
/* Note: this enum controls ZSTD_d_forceIgnoreChecksum */
ZSTD_d_validateChecksum = 0,
ZSTD_d_ignoreChecksum = 1
} ZSTD_forceIgnoreChecksum_e;
typedef enum {
/* Note: this enum and the behavior it controls are effectively internal
* implementation details of the compressor. They are expected to continue
@ -1253,14 +1302,74 @@ ZSTDLIB_API unsigned long long ZSTD_decompressBound(const void* src, size_t srcS
* or an error code (if srcSize is too small) */
ZSTDLIB_API size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize);
/*! ZSTD_getSequences() :
* Extract sequences from the sequence store
typedef enum {
ZSTD_sf_noBlockDelimiters = 0, /* Representation of ZSTD_Sequence has no block delimiters, sequences only */
ZSTD_sf_explicitBlockDelimiters = 1 /* Representation of ZSTD_Sequence contains explicit block delimiters */
} ZSTD_sequenceFormat_e;
/*! ZSTD_generateSequences() :
* Generate sequences using ZSTD_compress2, given a source buffer.
*
* Each block will end with a dummy sequence
* with offset == 0, matchLength == 0, and litLength == length of last literals.
* litLength may be == 0, and if so, then the sequence of (of: 0 ml: 0 ll: 0)
* simply acts as a block delimiter.
*
* zc can be used to insert custom compression params.
* This function invokes ZSTD_compress2
* @return : number of sequences extracted
*
* The output of this function can be fed into ZSTD_compressSequences() with CCtx
* setting of ZSTD_c_blockDelimiters as ZSTD_sf_explicitBlockDelimiters
* @return : number of sequences generated
*/
ZSTDLIB_API size_t ZSTD_getSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
size_t outSeqsSize, const void* src, size_t srcSize);
ZSTDLIB_API size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
size_t outSeqsSize, const void* src, size_t srcSize);
/*! ZSTD_mergeBlockDelimiters() :
* Given an array of ZSTD_Sequence, remove all sequences that represent block delimiters/last literals
* by merging them into into the literals of the next sequence.
*
* As such, the final generated result has no explicit representation of block boundaries,
* and the final last literals segment is not represented in the sequences.
*
* The output of this function can be fed into ZSTD_compressSequences() with CCtx
* setting of ZSTD_c_blockDelimiters as ZSTD_sf_noBlockDelimiters
* @return : number of sequences left after merging
*/
ZSTDLIB_API size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize);
/*! ZSTD_compressSequences() :
* Compress an array of ZSTD_Sequence, generated from the original source buffer, into dst.
* If a dictionary is included, then the cctx should reference the dict. (see: ZSTD_CCtx_refCDict(), ZSTD_CCtx_loadDictionary(), etc.)
* The entire source is compressed into a single frame.
*
* The compression behavior changes based on cctx params. In particular:
* If ZSTD_c_blockDelimiters == ZSTD_sf_noBlockDelimiters, the array of ZSTD_Sequence is expected to contain
* no block delimiters (defined in ZSTD_Sequence). Block boundaries are roughly determined based on
* the block size derived from the cctx, and sequences may be split. This is the default setting.
*
* If ZSTD_c_blockDelimiters == ZSTD_sf_explicitBlockDelimiters, the array of ZSTD_Sequence is expected to contain
* block delimiters (defined in ZSTD_Sequence). Behavior is undefined if no block delimiters are provided.
*
* If ZSTD_c_validateSequences == 0, this function will blindly accept the sequences provided. Invalid sequences cause undefined
* behavior. If ZSTD_c_validateSequences == 1, then if sequence is invalid (see doc/zstd_compression_format.md for
* specifics regarding offset/matchlength requirements) then the function will bail out and return an error.
*
* In addition to the two adjustable experimental params, there are other important cctx params.
* - ZSTD_c_minMatch MUST be set as less than or equal to the smallest match generated by the match finder. It has a minimum value of ZSTD_MINMATCH_MIN.
* - ZSTD_c_compressionLevel accordingly adjusts the strength of the entropy coder, as it would in typical compression.
* - ZSTD_c_windowLog affects offset validation: this function will return an error at higher debug levels if a provided offset
* is larger than what the spec allows for a given window log and dictionary (if present). See: doc/zstd_compression_format.md
*
* Note: Repcodes are, as of now, always re-calculated within this function, so ZSTD_Sequence::rep is unused.
* Note 2: Once we integrate ability to ingest repcodes, the explicit block delims mode must respect those repcodes exactly,
* and cannot emit an RLE block that disagrees with the repcode history
* @return : final compressed size or a ZSTD error.
*/
ZSTDLIB_API size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size_t dstSize,
const ZSTD_Sequence* inSeqs, size_t inSeqsSize,
const void* src, size_t srcSize);
/***************************************
@ -1372,7 +1481,11 @@ ZSTDLIB_API const ZSTD_DDict* ZSTD_initStaticDDict(
typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size);
typedef void (*ZSTD_freeFunction) (void* opaque, void* address);
typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem;
static ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL }; /**< this constant defers to stdlib's functions */
static
#ifdef __GNUC__
__attribute__((__unused__))
#endif
ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL }; /**< this constant defers to stdlib's functions */
ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem);
@ -1385,13 +1498,36 @@ ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictS
ZSTD_compressionParameters cParams,
ZSTD_customMem customMem);
/* ! Thread pool :
* These prototypes make it possible to share a thread pool among multiple compression contexts.
* This can limit resources for applications with multiple threads where each one uses
* a threaded compression mode (via ZSTD_c_nbWorkers parameter).
* ZSTD_createThreadPool creates a new thread pool with a given number of threads.
* Note that the lifetime of such pool must exist while being used.
* ZSTD_CCtx_refThreadPool assigns a thread pool to a context (use NULL argument value
* to use an internal thread pool).
* ZSTD_freeThreadPool frees a thread pool.
*/
typedef struct POOL_ctx_s ZSTD_threadPool;
ZSTDLIB_API ZSTD_threadPool* ZSTD_createThreadPool(size_t numThreads);
ZSTDLIB_API void ZSTD_freeThreadPool (ZSTD_threadPool* pool);
ZSTDLIB_API size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool);
/*
* This API is temporary and is expected to change or disappear in the future!
*/
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced2(
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
const ZSTD_CCtx_params* cctxParams,
ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_customMem customMem);
/***************************************
* Advanced compression functions
***************************************/
@ -1404,6 +1540,12 @@ ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictS
* note: equivalent to ZSTD_createCDict_advanced(), with dictLoadMethod==ZSTD_dlm_byRef */
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel);
/*! ZSTD_getDictID_fromCDict() :
* Provides the dictID of the dictionary loaded into `cdict`.
* If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
* Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
ZSTDLIB_API unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict);
/*! ZSTD_getCParams() :
* @return ZSTD_compressionParameters structure for a selected compression level and estimated srcSize.
* `estimatedSrcSize` value is optional, select 0 if not known */
@ -1518,6 +1660,143 @@ ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* pre
* but compression ratio may regress significantly if guess considerably underestimates */
#define ZSTD_c_srcSizeHint ZSTD_c_experimentalParam7
/* Controls whether the new and experimental "dedicated dictionary search
* structure" can be used. This feature is still rough around the edges, be
* prepared for surprising behavior!
*
* How to use it:
*
* When using a CDict, whether to use this feature or not is controlled at
* CDict creation, and it must be set in a CCtxParams set passed into that
* construction (via ZSTD_createCDict_advanced2()). A compression will then
* use the feature or not based on how the CDict was constructed; the value of
* this param, set in the CCtx, will have no effect.
*
* However, when a dictionary buffer is passed into a CCtx, such as via
* ZSTD_CCtx_loadDictionary(), this param can be set on the CCtx to control
* whether the CDict that is created internally can use the feature or not.
*
* What it does:
*
* Normally, the internal data structures of the CDict are analogous to what
* would be stored in a CCtx after compressing the contents of a dictionary.
* To an approximation, a compression using a dictionary can then use those
* data structures to simply continue what is effectively a streaming
* compression where the simulated compression of the dictionary left off.
* Which is to say, the search structures in the CDict are normally the same
* format as in the CCtx.
*
* It is possible to do better, since the CDict is not like a CCtx: the search
* structures are written once during CDict creation, and then are only read
* after that, while the search structures in the CCtx are both read and
* written as the compression goes along. This means we can choose a search
* structure for the dictionary that is read-optimized.
*
* This feature enables the use of that different structure.
*
* Note that some of the members of the ZSTD_compressionParameters struct have
* different semantics and constraints in the dedicated search structure. It is
* highly recommended that you simply set a compression level in the CCtxParams
* you pass into the CDict creation call, and avoid messing with the cParams
* directly.
*
* Effects:
*
* This will only have any effect when the selected ZSTD_strategy
* implementation supports this feature. Currently, that's limited to
* ZSTD_greedy, ZSTD_lazy, and ZSTD_lazy2.
*
* Note that this means that the CDict tables can no longer be copied into the
* CCtx, so the dict attachment mode ZSTD_dictForceCopy will no longer be
* useable. The dictionary can only be attached or reloaded.
*
* In general, you should expect compression to be faster--sometimes very much
* so--and CDict creation to be slightly slower. Eventually, we will probably
* make this mode the default.
*/
#define ZSTD_c_enableDedicatedDictSearch ZSTD_c_experimentalParam8
/* ZSTD_c_stableInBuffer
* Experimental parameter.
* Default is 0 == disabled. Set to 1 to enable.
*
* Tells the compressor that the ZSTD_inBuffer will ALWAYS be the same
* between calls, except for the modifications that zstd makes to pos (the
* caller must not modify pos). This is checked by the compressor, and
* compression will fail if it ever changes. This means the only flush
* mode that makes sense is ZSTD_e_end, so zstd will error if ZSTD_e_end
* is not used. The data in the ZSTD_inBuffer in the range [src, src + pos)
* MUST not be modified during compression or you will get data corruption.
*
* When this flag is enabled zstd won't allocate an input window buffer,
* because the user guarantees it can reference the ZSTD_inBuffer until
* the frame is complete. But, it will still allocate an output buffer
* large enough to fit a block (see ZSTD_c_stableOutBuffer). This will also
* avoid the memcpy() from the input buffer to the input window buffer.
*
* NOTE: ZSTD_compressStream2() will error if ZSTD_e_end is not used.
* That means this flag cannot be used with ZSTD_compressStream().
*
* NOTE: So long as the ZSTD_inBuffer always points to valid memory, using
* this flag is ALWAYS memory safe, and will never access out-of-bounds
* memory. However, compression WILL fail if you violate the preconditions.
*
* WARNING: The data in the ZSTD_inBuffer in the range [dst, dst + pos) MUST
* not be modified during compression or you will get data corruption. This
* is because zstd needs to reference data in the ZSTD_inBuffer to find
* matches. Normally zstd maintains its own window buffer for this purpose,
* but passing this flag tells zstd to use the user provided buffer.
*/
#define ZSTD_c_stableInBuffer ZSTD_c_experimentalParam9
/* ZSTD_c_stableOutBuffer
* Experimental parameter.
* Default is 0 == disabled. Set to 1 to enable.
*
* Tells he compressor that the ZSTD_outBuffer will not be resized between
* calls. Specifically: (out.size - out.pos) will never grow. This gives the
* compressor the freedom to say: If the compressed data doesn't fit in the
* output buffer then return ZSTD_error_dstSizeTooSmall. This allows us to
* always decompress directly into the output buffer, instead of decompressing
* into an internal buffer and copying to the output buffer.
*
* When this flag is enabled zstd won't allocate an output buffer, because
* it can write directly to the ZSTD_outBuffer. It will still allocate the
* input window buffer (see ZSTD_c_stableInBuffer).
*
* Zstd will check that (out.size - out.pos) never grows and return an error
* if it does. While not strictly necessary, this should prevent surprises.
*/
#define ZSTD_c_stableOutBuffer ZSTD_c_experimentalParam10
/* ZSTD_c_blockDelimiters
* Default is 0 == ZSTD_sf_noBlockDelimiters.
*
* For use with sequence compression API: ZSTD_compressSequences().
*
* Designates whether or not the given array of ZSTD_Sequence contains block delimiters
* and last literals, which are defined as sequences with offset == 0 and matchLength == 0.
* See the definition of ZSTD_Sequence for more specifics.
*/
#define ZSTD_c_blockDelimiters ZSTD_c_experimentalParam11
/* ZSTD_c_validateSequences
* Default is 0 == disabled. Set to 1 to enable sequence validation.
*
* For use with sequence compression API: ZSTD_compressSequences().
* Designates whether or not we validate sequences provided to ZSTD_compressSequences()
* during function execution.
*
* Without validation, providing a sequence that does not conform to the zstd spec will cause
* undefined behavior, and may produce a corrupted block.
*
* With validation enabled, a if sequence is invalid (see doc/zstd_compression_format.md for
* specifics regarding offset/matchlength requirements) then the function will bail out and
* return an error.
*
*/
#define ZSTD_c_validateSequences ZSTD_c_experimentalParam12
/*! ZSTD_CCtx_getParameter() :
* Get the requested compression parameter value, selected by enum ZSTD_cParameter,
* and store it into int* value.
@ -1566,8 +1845,10 @@ ZSTDLIB_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, Z
/*! ZSTD_CCtxParams_setParameter() :
* Similar to ZSTD_CCtx_setParameter.
* Set one compression parameter, selected by enum ZSTD_cParameter.
* Parameters must be applied to a ZSTD_CCtx using ZSTD_CCtx_setParametersUsingCCtxParams().
* @result : 0, or an error code (which can be tested with ZSTD_isError()).
* Parameters must be applied to a ZSTD_CCtx using
* ZSTD_CCtx_setParametersUsingCCtxParams().
* @result : a code representing success or failure (which can be tested with
* ZSTD_isError()).
*/
ZSTDLIB_API size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int value);
@ -1647,6 +1928,13 @@ ZSTDLIB_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* pre
*/
ZSTDLIB_API size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize);
/*! ZSTD_DCtx_getParameter() :
* Get the requested decompression parameter value, selected by enum ZSTD_dParameter,
* and store it into int* value.
* @return : 0, or an error code (which can be tested with ZSTD_isError()).
*/
ZSTDLIB_API size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value);
/* ZSTD_d_format
* experimental parameter,
* allowing selection between ZSTD_format_e input compression formats
@ -1684,6 +1972,17 @@ ZSTDLIB_API size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowS
*/
#define ZSTD_d_stableOutBuffer ZSTD_d_experimentalParam2
/* ZSTD_d_forceIgnoreChecksum
* Experimental parameter.
* Default is 0 == disabled. Set to 1 to enable
*
* Tells the decompressor to skip checksum validation during decompression, regardless
* of whether checksumming was specified during compression. This offers some
* slight performance benefits, and may be useful for debugging.
* Param has values of type ZSTD_forceIgnoreChecksum_e
*/
#define ZSTD_d_forceIgnoreChecksum ZSTD_d_experimentalParam3
/*! ZSTD_DCtx_setFormat() :
* Instruct the decoder context about what kind of data to decode next.
* This instruction is mandatory to decode data without a fully-formed header,
@ -1711,7 +2010,8 @@ ZSTDLIB_API size_t ZSTD_decompressStream_simpleArgs (
********************************************************************/
/*===== Advanced Streaming compression functions =====*/
/**! ZSTD_initCStream_srcSize() :
/*! ZSTD_initCStream_srcSize() :
* This function is deprecated, and equivalent to:
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any)
@ -1728,7 +2028,7 @@ ZSTD_initCStream_srcSize(ZSTD_CStream* zcs,
int compressionLevel,
unsigned long long pledgedSrcSize);
/**! ZSTD_initCStream_usingDict() :
/*! ZSTD_initCStream_usingDict() :
* This function is deprecated, and is equivalent to:
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel);
@ -1745,7 +2045,7 @@ ZSTD_initCStream_usingDict(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
int compressionLevel);
/**! ZSTD_initCStream_advanced() :
/*! ZSTD_initCStream_advanced() :
* This function is deprecated, and is approximately equivalent to:
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* // Pseudocode: Set each zstd parameter and leave the rest as-is.
@ -1766,7 +2066,7 @@ ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
ZSTD_parameters params,
unsigned long long pledgedSrcSize);
/**! ZSTD_initCStream_usingCDict() :
/*! ZSTD_initCStream_usingCDict() :
* This function is deprecated, and equivalent to:
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* ZSTD_CCtx_refCDict(zcs, cdict);
@ -1776,7 +2076,7 @@ ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
*/
ZSTDLIB_API size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict);
/**! ZSTD_initCStream_usingCDict_advanced() :
/*! ZSTD_initCStream_usingCDict_advanced() :
* This function is DEPRECATED, and is approximately equivalent to:
* ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
* // Pseudocode: Set each zstd frame parameter and leave the rest as-is.
@ -1849,7 +2149,8 @@ ZSTDLIB_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx);
/*===== Advanced Streaming decompression functions =====*/
/**
/*!
* This function is deprecated, and is equivalent to:
*
* ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
@ -1860,7 +2161,7 @@ ZSTDLIB_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx);
*/
ZSTDLIB_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize);
/**
/*!
* This function is deprecated, and is equivalent to:
*
* ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
@ -1871,7 +2172,7 @@ ZSTDLIB_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dic
*/
ZSTDLIB_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict);
/**
/*!
* This function is deprecated, and is equivalent to:
*
* ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
@ -1933,7 +2234,7 @@ ZSTDLIB_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstC
ZSTDLIB_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/*-
/**
Buffer-less streaming decompression (synchronous mode)
A ZSTD_DCtx object is required to track streaming operations.