|
|
|
|
@ -73,10 +73,6 @@ void btHeightfieldTerrainShape::initialize(
|
|
|
|
|
m_useZigzagSubdivision = false;
|
|
|
|
|
m_upAxis = upAxis;
|
|
|
|
|
m_localScaling.setValue(btScalar(1.), btScalar(1.), btScalar(1.));
|
|
|
|
|
m_vboundsGrid = NULL;
|
|
|
|
|
m_vboundsChunkSize = 0;
|
|
|
|
|
m_vboundsGridWidth = 0;
|
|
|
|
|
m_vboundsGridLength = 0;
|
|
|
|
|
|
|
|
|
|
// determine min/max axis-aligned bounding box (aabb) values
|
|
|
|
|
switch (m_upAxis)
|
|
|
|
|
@ -112,7 +108,6 @@ void btHeightfieldTerrainShape::initialize(
|
|
|
|
|
|
|
|
|
|
btHeightfieldTerrainShape::~btHeightfieldTerrainShape()
|
|
|
|
|
{
|
|
|
|
|
clearAccelerator();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void btHeightfieldTerrainShape::getAabb(const btTransform& t, btVector3& aabbMin, btVector3& aabbMax) const
|
|
|
|
|
@ -328,8 +323,6 @@ void btHeightfieldTerrainShape::processAllTriangles(btTriangleCallback* callback
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// TODO If m_vboundsGrid is available, use it to determine if we really need to process this area
|
|
|
|
|
|
|
|
|
|
for (int j = startJ; j < endJ; j++)
|
|
|
|
|
{
|
|
|
|
|
for (int x = startX; x < endX; x++)
|
|
|
|
|
@ -380,416 +373,3 @@ const btVector3& btHeightfieldTerrainShape::getLocalScaling() const
|
|
|
|
|
{
|
|
|
|
|
return m_localScaling;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct GridRaycastState
|
|
|
|
|
{
|
|
|
|
|
int x; // Next quad coords
|
|
|
|
|
int z;
|
|
|
|
|
int prev_x; // Previous quad coords
|
|
|
|
|
int prev_z;
|
|
|
|
|
btScalar param; // Exit param for previous quad
|
|
|
|
|
btScalar prevParam; // Enter param for previous quad
|
|
|
|
|
btScalar maxDistanceFlat;
|
|
|
|
|
btScalar maxDistance3d;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// TODO Does it really need to take 3D vectors?
|
|
|
|
|
/// Iterates through a virtual 2D grid of unit-sized square cells,
|
|
|
|
|
/// and executes an action on each cell intersecting the given segment, ordered from begin to end.
|
|
|
|
|
/// Initially inspired by http://www.cse.yorku.ca/~amana/research/grid.pdf
|
|
|
|
|
template <typename Action_T>
|
|
|
|
|
void gridRaycast(Action_T &quadAction, const btVector3 &beginPos, const btVector3 &endPos)
|
|
|
|
|
{
|
|
|
|
|
GridRaycastState rs;
|
|
|
|
|
rs.maxDistance3d = beginPos.distance(endPos);
|
|
|
|
|
if (rs.maxDistance3d < 0.0001)
|
|
|
|
|
// Consider the ray is too small to hit anything
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
btScalar rayDirectionFlatX = endPos[0] - beginPos[0];
|
|
|
|
|
btScalar rayDirectionFlatZ = endPos[2] - beginPos[2];
|
|
|
|
|
rs.maxDistanceFlat = btSqrt(rayDirectionFlatX * rayDirectionFlatX + rayDirectionFlatZ * rayDirectionFlatZ);
|
|
|
|
|
|
|
|
|
|
if(rs.maxDistanceFlat < 0.0001)
|
|
|
|
|
{
|
|
|
|
|
// Consider the ray vertical
|
|
|
|
|
rayDirectionFlatX = 0;
|
|
|
|
|
rayDirectionFlatZ = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
rayDirectionFlatX /= rs.maxDistanceFlat;
|
|
|
|
|
rayDirectionFlatZ /= rs.maxDistanceFlat;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const int xiStep = rayDirectionFlatX > 0 ? 1 : rayDirectionFlatX < 0 ? -1 : 0;
|
|
|
|
|
const int ziStep = rayDirectionFlatZ > 0 ? 1 : rayDirectionFlatZ < 0 ? -1 : 0;
|
|
|
|
|
|
|
|
|
|
const float infinite = 9999999;
|
|
|
|
|
const btScalar paramDeltaX = xiStep != 0 ? 1.f / btFabs(rayDirectionFlatX) : infinite;
|
|
|
|
|
const btScalar paramDeltaZ = ziStep != 0 ? 1.f / btFabs(rayDirectionFlatZ) : infinite;
|
|
|
|
|
|
|
|
|
|
// pos = param * dir
|
|
|
|
|
btScalar paramCrossX; // At which value of `param` we will cross a x-axis lane?
|
|
|
|
|
btScalar paramCrossZ; // At which value of `param` we will cross a z-axis lane?
|
|
|
|
|
|
|
|
|
|
// paramCrossX and paramCrossZ are initialized as being the first cross
|
|
|
|
|
// X initialization
|
|
|
|
|
if (xiStep != 0)
|
|
|
|
|
{
|
|
|
|
|
if (xiStep == 1)
|
|
|
|
|
paramCrossX = (ceil(beginPos[0]) - beginPos[0]) * paramDeltaX;
|
|
|
|
|
else
|
|
|
|
|
paramCrossX = (beginPos[0] - floor(beginPos[0])) * paramDeltaX;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
paramCrossX = infinite; // Will never cross on X
|
|
|
|
|
|
|
|
|
|
// Z initialization
|
|
|
|
|
if (ziStep != 0)
|
|
|
|
|
{
|
|
|
|
|
if (ziStep == 1)
|
|
|
|
|
paramCrossZ = (ceil(beginPos[2]) - beginPos[2]) * paramDeltaZ;
|
|
|
|
|
else
|
|
|
|
|
paramCrossZ = (beginPos[2] - floor(beginPos[2])) * paramDeltaZ;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
paramCrossZ = infinite; // Will never cross on Z
|
|
|
|
|
|
|
|
|
|
rs.x = static_cast<int>(floor(beginPos[0]));
|
|
|
|
|
rs.z = static_cast<int>(floor(beginPos[2]));
|
|
|
|
|
|
|
|
|
|
// Workaround cases where the ray starts at an integer position
|
|
|
|
|
if (paramCrossX == 0.0)
|
|
|
|
|
{
|
|
|
|
|
paramCrossX += paramDeltaX;
|
|
|
|
|
// If going backwards, we should ignore the position we would get by the above flooring,
|
|
|
|
|
// because the ray is not heading in that direction
|
|
|
|
|
if (xiStep == -1)
|
|
|
|
|
rs.x -= 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (paramCrossZ == 0.0)
|
|
|
|
|
{
|
|
|
|
|
paramCrossZ += paramDeltaZ;
|
|
|
|
|
if (ziStep == -1)
|
|
|
|
|
rs.z -= 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
rs.prev_x = rs.x;
|
|
|
|
|
rs.prev_z = rs.z;
|
|
|
|
|
rs.param = 0;
|
|
|
|
|
|
|
|
|
|
while (true)
|
|
|
|
|
{
|
|
|
|
|
rs.prev_x = rs.x;
|
|
|
|
|
rs.prev_z = rs.z;
|
|
|
|
|
rs.prevParam = rs.param;
|
|
|
|
|
|
|
|
|
|
if (paramCrossX < paramCrossZ)
|
|
|
|
|
{
|
|
|
|
|
// X lane
|
|
|
|
|
rs.x += xiStep;
|
|
|
|
|
// Assign before advancing the param,
|
|
|
|
|
// to be in sync with the initialization step
|
|
|
|
|
rs.param = paramCrossX;
|
|
|
|
|
paramCrossX += paramDeltaX;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
// Z lane
|
|
|
|
|
rs.z += ziStep;
|
|
|
|
|
rs.param = paramCrossZ;
|
|
|
|
|
paramCrossZ += paramDeltaZ;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (rs.param > rs.maxDistanceFlat)
|
|
|
|
|
{
|
|
|
|
|
rs.param = rs.maxDistanceFlat;
|
|
|
|
|
quadAction(rs);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
quadAction(rs);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct ProcessTrianglesAction
|
|
|
|
|
{
|
|
|
|
|
const btHeightfieldTerrainShape *shape;
|
|
|
|
|
bool flipQuadEdges;
|
|
|
|
|
bool useDiamondSubdivision;
|
|
|
|
|
int width;
|
|
|
|
|
int length;
|
|
|
|
|
btTriangleCallback* callback;
|
|
|
|
|
|
|
|
|
|
void exec(int x, int z) const
|
|
|
|
|
{
|
|
|
|
|
if(x < 0 || z < 0 || x >= width || z >= length)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
btVector3 vertices[3];
|
|
|
|
|
|
|
|
|
|
// Check quad
|
|
|
|
|
if (flipQuadEdges || (useDiamondSubdivision && (((z + x) & 1) > 0)))
|
|
|
|
|
{
|
|
|
|
|
// First triangle
|
|
|
|
|
shape->getVertex(x, z, vertices[0]);
|
|
|
|
|
shape->getVertex(x + 1, z, vertices[1]);
|
|
|
|
|
shape->getVertex(x + 1, z + 1, vertices[2]);
|
|
|
|
|
callback->processTriangle(vertices, x, z);
|
|
|
|
|
|
|
|
|
|
// Second triangle
|
|
|
|
|
shape->getVertex(x, z, vertices[0]);
|
|
|
|
|
shape->getVertex(x + 1, z + 1, vertices[1]);
|
|
|
|
|
shape->getVertex(x, z + 1, vertices[2]);
|
|
|
|
|
callback->processTriangle(vertices, x, z);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
// First triangle
|
|
|
|
|
shape->getVertex(x, z, vertices[0]);
|
|
|
|
|
shape->getVertex(x, z + 1, vertices[1]);
|
|
|
|
|
shape->getVertex(x + 1, z, vertices[2]);
|
|
|
|
|
callback->processTriangle(vertices, x, z);
|
|
|
|
|
|
|
|
|
|
// Second triangle
|
|
|
|
|
shape->getVertex(x + 1, z, vertices[0]);
|
|
|
|
|
shape->getVertex(x, z + 1, vertices[1]);
|
|
|
|
|
shape->getVertex(x + 1, z + 1, vertices[2]);
|
|
|
|
|
callback->processTriangle(vertices, x, z);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void operator ()(const GridRaycastState &bs) const
|
|
|
|
|
{
|
|
|
|
|
exec(bs.prev_x, bs.prev_z);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct ProcessVBoundsAction
|
|
|
|
|
{
|
|
|
|
|
const btHeightfieldTerrainShape::Range *vbounds;
|
|
|
|
|
int width;
|
|
|
|
|
int length;
|
|
|
|
|
int chunkSize;
|
|
|
|
|
|
|
|
|
|
btVector3 rayBegin;
|
|
|
|
|
btVector3 rayEnd;
|
|
|
|
|
btVector3 rayDir;
|
|
|
|
|
|
|
|
|
|
ProcessTrianglesAction processTriangles;
|
|
|
|
|
|
|
|
|
|
void operator ()(const GridRaycastState &rs) const
|
|
|
|
|
{
|
|
|
|
|
int x = rs.prev_x;
|
|
|
|
|
int z = rs.prev_z;
|
|
|
|
|
|
|
|
|
|
if(x < 0 || z < 0 || x >= width || z >= length)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
const btHeightfieldTerrainShape::Range chunk = vbounds[x + z * width];
|
|
|
|
|
|
|
|
|
|
btVector3 enterPos;
|
|
|
|
|
btVector3 exitPos;
|
|
|
|
|
|
|
|
|
|
if (rs.maxDistanceFlat > 0.0001)
|
|
|
|
|
{
|
|
|
|
|
btScalar flatTo3d = chunkSize * rs.maxDistance3d / rs.maxDistanceFlat;
|
|
|
|
|
btScalar enterParam3d = rs.prevParam * flatTo3d;
|
|
|
|
|
btScalar exitParam3d = rs.param * flatTo3d;
|
|
|
|
|
enterPos = rayBegin + rayDir * enterParam3d;
|
|
|
|
|
exitPos = rayBegin + rayDir * exitParam3d;
|
|
|
|
|
|
|
|
|
|
// We did enter the flat projection of the AABB,
|
|
|
|
|
// but we have to check if we intersect it on the vertical axis
|
|
|
|
|
if (enterPos[1] > chunk.max && exitPos[1] > chunk.max)
|
|
|
|
|
return;
|
|
|
|
|
if (enterPos[1] < chunk.min && exitPos[1] < chunk.min)
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
// Consider the ray vertical
|
|
|
|
|
// (though we shouldn't reach this often because there is an early check up-front)
|
|
|
|
|
enterPos = rayBegin;
|
|
|
|
|
exitPos = rayEnd;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
gridRaycast(processTriangles, enterPos, exitPos);
|
|
|
|
|
// Note: it could be possible to have more than one grid at different levels,
|
|
|
|
|
// to do this there would be a branch using a pointer to another ProcessVBoundsAction
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// TODO How do I interrupt the ray when there is a hit? `callback` does not return any result
|
|
|
|
|
/// Performs a raycast using a hierarchical Bresenham algorithm.
|
|
|
|
|
/// Does not allocate any memory by itself.
|
|
|
|
|
void btHeightfieldTerrainShape::performRaycast(btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget) const
|
|
|
|
|
{
|
|
|
|
|
// Transform to cell-local
|
|
|
|
|
btVector3 beginPos = raySource / m_localScaling;
|
|
|
|
|
btVector3 endPos = rayTarget / m_localScaling;
|
|
|
|
|
beginPos += m_localOrigin;
|
|
|
|
|
endPos += m_localOrigin;
|
|
|
|
|
|
|
|
|
|
ProcessTrianglesAction processTriangles;
|
|
|
|
|
processTriangles.shape = this;
|
|
|
|
|
processTriangles.flipQuadEdges = m_flipQuadEdges;
|
|
|
|
|
processTriangles.useDiamondSubdivision = m_useDiamondSubdivision;
|
|
|
|
|
processTriangles.callback = callback;
|
|
|
|
|
processTriangles.width = m_heightStickWidth - 1;
|
|
|
|
|
processTriangles.length = m_heightStickLength - 1;
|
|
|
|
|
|
|
|
|
|
// TODO Transform vectors to account for m_upAxis
|
|
|
|
|
int iBeginX = static_cast<int>(floor(beginPos[0]));
|
|
|
|
|
int iBeginZ = static_cast<int>(floor(beginPos[2]));
|
|
|
|
|
int iEndX = static_cast<int>(floor(endPos[0]));
|
|
|
|
|
int iEndZ = static_cast<int>(floor(endPos[2]));
|
|
|
|
|
|
|
|
|
|
if (iBeginX == iEndX && iBeginZ == iEndZ)
|
|
|
|
|
{
|
|
|
|
|
// The ray will never cross quads within the plane,
|
|
|
|
|
// so directly process triangles within one quad
|
|
|
|
|
// (typically, vertical rays should end up here)
|
|
|
|
|
processTriangles.exec(iBeginX, iEndZ);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (m_vboundsGrid == NULL)
|
|
|
|
|
{
|
|
|
|
|
// Process all quads intersecting the flat projection of the ray
|
|
|
|
|
gridRaycast(processTriangles, beginPos, endPos);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
btVector3 rayDiff = endPos - beginPos;
|
|
|
|
|
btScalar flatDistance2 = rayDiff[0] * rayDiff[0] + rayDiff[2] * rayDiff[2];
|
|
|
|
|
if (flatDistance2 < m_vboundsChunkSize * m_vboundsChunkSize)
|
|
|
|
|
{
|
|
|
|
|
// Don't use chunks, the ray is too short in the plane
|
|
|
|
|
gridRaycast(processTriangles, beginPos, endPos);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ProcessVBoundsAction processVBounds;
|
|
|
|
|
processVBounds.width = m_vboundsGridWidth;
|
|
|
|
|
processVBounds.length = m_vboundsGridLength;
|
|
|
|
|
processVBounds.vbounds = m_vboundsGrid;
|
|
|
|
|
processVBounds.rayBegin = beginPos;
|
|
|
|
|
processVBounds.rayEnd = endPos;
|
|
|
|
|
processVBounds.rayDir = rayDiff.normalized();
|
|
|
|
|
processVBounds.processTriangles = processTriangles;
|
|
|
|
|
processVBounds.chunkSize = m_vboundsChunkSize;
|
|
|
|
|
// The ray is long, run raycast on a higher-level grid
|
|
|
|
|
gridRaycast(processVBounds, beginPos / m_vboundsChunkSize, endPos / m_vboundsChunkSize);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/// Builds a grid data structure storing the min and max heights of the terrain in chunks.
|
|
|
|
|
/// if chunkSize is zero, that accelerator is removed.
|
|
|
|
|
/// If you modify the heights, you need to rebuild this accelerator.
|
|
|
|
|
void btHeightfieldTerrainShape::buildAccelerator(int chunkSize)
|
|
|
|
|
{
|
|
|
|
|
if (chunkSize <= 0)
|
|
|
|
|
{
|
|
|
|
|
clearAccelerator();
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
m_vboundsChunkSize = chunkSize;
|
|
|
|
|
int nChunksX = m_heightStickWidth / chunkSize;
|
|
|
|
|
int nChunksZ = m_heightStickLength / chunkSize;
|
|
|
|
|
|
|
|
|
|
if (m_heightStickWidth % chunkSize > 0)
|
|
|
|
|
++nChunksX; // In case terrain size isn't dividable by chunk size
|
|
|
|
|
if (m_heightStickLength % chunkSize > 0)
|
|
|
|
|
++nChunksZ;
|
|
|
|
|
|
|
|
|
|
if(m_vboundsGridWidth != nChunksX || m_vboundsGridLength != nChunksZ)
|
|
|
|
|
{
|
|
|
|
|
clearAccelerator();
|
|
|
|
|
m_vboundsGridWidth = nChunksX;
|
|
|
|
|
m_vboundsGridLength = nChunksZ;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (nChunksX == 0 || nChunksZ == 0)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
// TODO What is the recommended way to allocate this?
|
|
|
|
|
// This data structure is only reallocated if the required size changed
|
|
|
|
|
if (m_vboundsGrid == NULL)
|
|
|
|
|
m_vboundsGrid = new Range[nChunksX * nChunksZ];
|
|
|
|
|
|
|
|
|
|
// Compute min and max height for all chunks
|
|
|
|
|
for (int cz = 0; cz < nChunksZ; ++cz)
|
|
|
|
|
{
|
|
|
|
|
int z0 = cz * chunkSize;
|
|
|
|
|
|
|
|
|
|
for (int cx = 0; cx < nChunksX; ++cx)
|
|
|
|
|
{
|
|
|
|
|
int x0 = cx * chunkSize;
|
|
|
|
|
|
|
|
|
|
Range r;
|
|
|
|
|
|
|
|
|
|
r.min = getRawHeightFieldValue(x0, z0);
|
|
|
|
|
r.max = r.min;
|
|
|
|
|
|
|
|
|
|
// Compute min and max height for this chunk.
|
|
|
|
|
// We have to include one extra cell to account for neighbors.
|
|
|
|
|
// Here is why:
|
|
|
|
|
// Say we have a flat terrain, and a plateau that fits a chunk perfectly.
|
|
|
|
|
//
|
|
|
|
|
// Left Right
|
|
|
|
|
// 0---0---0---1---1---1
|
|
|
|
|
// | | | | | |
|
|
|
|
|
// 0---0---0---1---1---1
|
|
|
|
|
// | | | | | |
|
|
|
|
|
// 0---0---0---1---1---1
|
|
|
|
|
// x
|
|
|
|
|
//
|
|
|
|
|
// If the AABB for the Left chunk did not share vertices with the Right,
|
|
|
|
|
// then we would fail collision tests at x due to a gap.
|
|
|
|
|
//
|
|
|
|
|
for (int z = z0; z < z0 + chunkSize + 1; ++z)
|
|
|
|
|
{
|
|
|
|
|
if (z >= m_heightStickLength)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
for (int x = x0; x < x0 + chunkSize + 1; ++x)
|
|
|
|
|
{
|
|
|
|
|
if (x >= m_heightStickWidth)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
btScalar height = getRawHeightFieldValue(x, z);
|
|
|
|
|
|
|
|
|
|
if (height < r.min)
|
|
|
|
|
r.min = height;
|
|
|
|
|
else if (height > r.max)
|
|
|
|
|
r.max = height;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
m_vboundsGrid[cx + cz * nChunksX] = r;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void btHeightfieldTerrainShape::clearAccelerator()
|
|
|
|
|
{
|
|
|
|
|
if (m_vboundsGrid)
|
|
|
|
|
{
|
|
|
|
|
// TODO What is the recommended way to deallocate this?
|
|
|
|
|
delete[] m_vboundsGrid;
|
|
|
|
|
m_vboundsGrid = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|