Variant::duplicate() for resources
This in the scope of a duplication triggered via any type in the `Variant` realm. that is, the following: `Variant` itself, `Array` and `Dictionary`. That includes invoking `duplicate()` from scripts. A `duplicate_deep(deep_subresources_mode)` method is added to `Variant`, `Array` and `Dictionary` (for compatibility reasons, simply adding an extra parameter was not possible). The default value for it is `RESOURCE_DEEP_DUPLICATE_NONE`, which is like calling `duplicate(true)`. Remarks: - The results of copying resources via those `Variant` types are exactly the same as if the copy were initiated from the `Resource` type at C++. - In order to keep some separation between `Variant` and the higher-level animal which is `Resource`, `Variant` still contains the original code for that, so it's self-sufficient unless there's a `Resource` involved. Once the deep copy finds a `Resource` that has to be copied according to the duplication parameters, the algorithm invokes the `Resource` duplication machinery. When the stack is unwind back to a nesting level `Variant` can handle, `Variant` duplication logic keeps functioning. While that is good from a responsibility separation standpoint, that would have a caveat: `Variant` would not be aware of the mapping between original and duplicate subresources and so wouldn't be able to keep preventing multiple duplicates. To avoid that, this commit also introduces a wormwhole, a sharing mechanism by which `Variant` and `Resource` can collaborate in managing the lifetime of the original-to-duplicates map. The user-visible benefit is that the overduplicate prevention works as broadly as the whole `Variant` entity being copied, including all nesting levels, regardless how disconnected the data members containing resources may be across al the nesting levels. In other words, despite the aforementioned division of duties between `Variant` and `Resource` duplication logic, the duplicates map is shared among them. It's created when first finding a `Resource` and, however how deep the copy was working at that point, the map kept alive unitl the stack is unwind to the root user call, until the first step of the recursion. Thanks to that common map of duplicates, this commit is able to fix the issue that `Resource::duplicate_for_local_scene()` used to ignore overridden duplicate logic.
Godot Engine
2D and 3D cross-platform game engine
Godot Engine is a feature-packed, cross-platform game engine to create 2D and 3D games from a unified interface. It provides a comprehensive set of common tools, so that users can focus on making games without having to reinvent the wheel. Games can be exported with one click to a number of platforms, including the major desktop platforms (Linux, macOS, Windows), mobile platforms (Android, iOS), as well as Web-based platforms and consoles.
Free, open source and community-driven
Godot is completely free and open source under the very permissive MIT license. No strings attached, no royalties, nothing. The users' games are theirs, down to the last line of engine code. Godot's development is fully independent and community-driven, empowering users to help shape their engine to match their expectations. It is supported by the Godot Foundation not-for-profit.
Before being open sourced in February 2014, Godot had been developed by Juan Linietsky and Ariel Manzur (both still maintaining the project) for several years as an in-house engine, used to publish several work-for-hire titles.
Getting the engine
Binary downloads
Official binaries for the Godot editor and the export templates can be found on the Godot website.
Compiling from source
See the official docs for compilation instructions for every supported platform.
Community and contributing
Godot is not only an engine but an ever-growing community of users and engine developers. The main community channels are listed on the homepage.
The best way to get in touch with the core engine developers is to join the Godot Contributors Chat.
To get started contributing to the project, see the contributing guide. This document also includes guidelines for reporting bugs.
Documentation and demos
The official documentation is hosted on Read the Docs. It is maintained by the Godot community in its own GitHub repository.
The class reference is also accessible from the Godot editor.
We also maintain official demos in their own GitHub repository as well as a list of awesome Godot community resources.
There are also a number of other learning resources provided by the community, such as text and video tutorials, demos, etc. Consult the community channels for more information.
